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|_earning Goals

Detine the steps involved in SNP calling and what
they are doing.

Understand the reason for haplotype based SNP
calling.

Understand the recalibration approach to variant
filtering.

Define the N+1 problem in genotyping.
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@HD
@sQ
@SQ
@SQ

BAM headers: an essential part of a BAM file

VN:1.0 GO:none SO:coordinate

SN:chrM
SN:chrl
SN:chr2

[cut for clarity]

@SQ
@SQ
@SQ

SN:chr9
SN:chr10
SN:chrll

[cut for clarity]
SN:chr22 LN:49691432

@SQ
@SQ
@SQ
@RG
@RG
@RG
@RG
@RG
@RG
@RG
@RG
@PG
@PG

20FUKAAXX100202:1:1:12730:189900
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTA...[more bases]
?BA@A>BBBBACBBAC@BBCBBCBC@BC@CAC@:BBCBBCACAACBABCBCCAB...[more quals]
RG:Z:20FUK.1 NM:i:1 SM:i:37 AM:i:37 MD:Z:72G28

SN:chrX

SN:chrY

ID:20FUK.1
ID:20FUK.2
ID:20FUK.3
ID:20FUK.4
ID:20FUK.5
ID:20FUK.6
ID:20FUK.7
ID:20FUK.8

ID:BWA VN:0.5.7

LN:16571
LN:247249719
LN:242951149

LN:140273252
LN:135374737
LN:134452384

LN:154913754
LN:57772954
PL:illumina
PL:illumina
PL:illumina
PL:illumina
PL:illumina
PL:illumina
PL:illumina
PL:illumina
CL:tk

ID:GATK TableRecalibration

L

=

VN:1.0.2864

163 chrM 1

<[ Required: Standard header

~N

Essential: contigs of
aligned reference

sequence. Should be in
karyotypic order.

Essential: read groups. Carries
platform (PL), library (LB), and
sample (SM) information. Each
read is associated with a read

group

J

[

PU:20FUKAAXX100202.1
PU:20FUKAAXX100202.2
PU:20FUKAAXX100202.3
PU:20FUKAAXX100202.4
PU:20FUKAAXX100202.5
PU:20FUKAAXX100202.6
PU:20FUKAAXX100202.7
PU:20FUKAAXX100202.8

LB:Solexa-18483 SM:NA12878
LB:Solexa-18484 SM:NA12878
LB:Solexa-18483 SM:NA12878
LB:Solexa-18484 SM:NA12878
LB:Solexa-18483 SM:NA12878
LB:Solexa-18484 SM:NA12878
LB:Solexa-18483 SM:NA12878
LB:Solexa-18484 SM:NA12878

CN:BI
CN:BI
CN:BI
CN:BI
CN:BI
CN:BI
CN:BI
CN:BI

H

Useful: Data processing tools applied to the reads

60 101M = 282 381

MQ:i:60 PG:Z:BWA

uQ:i:33



Mapping short reads to a reference is simple in principle

Enormous pile of short
reads from NGS

Identify where the read matches

the reference sequence and record
match details as CIGAR string

WL

Mapping and RefPos: 1234567 809
alignment Reference: CCATACT -G A
. Read: CAT-CTAG
algorithms -
POS: 2 . Ny
CIGAR: 3M1D2M1I1M
Region 1 Region 2 Region 3 Reference
S S —— —— genome
— e | —  — =
—— S ———
e E— e
e S e
e S e Reads
o S
s S > mapped to
o




But mapping is actually very hard because of mismatches
(true mutations or sequencing errors), duplicated regions etc.

Enormous pile of short

reads from NGS

Ll

|

Uit

For more information see:

Li and Homer (2010). A survey of
sequence alignment algorithms for
next-generation sequencing.
Briefings in Bioinformatics.

Mapping algorithms account
for this by choosing the most

Mapping and likely placement
alignment
algorithms
=> mapping quality (MQ)
Region 1 Region 2A Region 2B _ } Reference
genome




Where does the duplication come from?

PCR DUPLICATES

— Increases with cycles

OPTICAL DUPLICATES

— Are nearby clusters on a flow cell lane

|||||||||||||||||||||||
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111111111111111111111

Cydo: 1 2 3

https.//www.khanacademy.org/science/biology/biotech-dna-technology/dna-sequencing-pcr-
electrophoresis/a/polymerase-chain-reaction-pcr

Lanes
12345678
P 1111
o HH
Ik
near
120
tiles/lane
§ far

Flow cell tiles

Lane 1 — - Inlet manifold ports

http://www.slideshare.net/jandot/next-generation-sequencing-course-part-2-sequence-mapping
http://www.slideshare.net/cosentia/illumina-gaiix-for-high-throughput-sequencing



Duplicates are flagged the same but can be tagged differently (

0x400 flag
DT:SQ

0x400 flag

DT:LB

http://core-genomics.blogspot.fi/2016/01/almost-everything-you-wanted-to-know.html|

[-A single cluster that
as two by RTA

duplicates as optical
duplicates

e

has falsely been called

* Third party tools may report
patterned flow cell clusterin

Optical Clustering
1 Cluster Called as 2 .

~

* Duplicates in nearby
wells on HiSeq
3000/4000

 During cluster
generation a library
occupies two adjacent
wells

et

(o Duplicate
molecules that
arise from
amplification

» during sample prep

Sister

omplement strands)
of same library form
independent clusters

» Treated as duplicates
by some informatic
pipelines

J

0x400 flag
DT:SQ

0x400 flag

DT:LB




The reason why duplicates are bad

® =sequencing error propagated in duplicates

Reference
— genome
] —  — =
——
I
L
I Reads
> mapped to

reference

|

{_

W

] After marking duplicates, the GATK will only see :
FP variant call

(bad) —

=
— e —— ] —
e } —
Eemm— I
T ey I

} ———

... and thus be more likely to make the right call



Easy to identify: duplicate reads have the
same starting position and same CIGAR string

Reference
genome

Reads
> mapped to
reference

[ ———

i —

o — N

=—1o 3 > Easy to bag & tag

[ — N oy

i J
I
Hey, Picard has an app for that!

POS: 340

CIGAR: 42M1D38M3I18M

Why wouldn’t we do this for GBS?



Base recalipbration
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Quality scores issued by sequencers
are inaccurate and biased

* Quality scores are critical for all downstream analysis

e Systematic biases are a major contributor to bad calls

Empirical — Reported Quality

Example of bias: qualities reported depending on nucleotide context

RMSE = 4.188

original

r— 1T T T 1T T T T T T T T T T T T
AA AG CA CG GA GG TA TG

Dinuc

Empirical — Reported Quality

10

5

0

-5

RMSE = 0.281

recalibrated

1T T T 1T T T T T T T T T T T T
AA AG CA CG GA GG TA TG

Dinuc




BQSR identifies patterns in how errors correlate with base features

* Empowered by looking at entire lane of data

* Analyze covariation among several features of a base, e.g.:

— Reported quality score
— Position within the read (machine cycle)
— Preceding and current nucleotide (sequencing chemistry effect)

 Based on the patterns identified:

Apply corrections to recalibrate the quality scores of all reads in
the BAM file.



How covariates are analyzed to identify patterns

* Any sequence mismatch = error except known variants!

 Keep track of number of observations and number of errors
as a function of various error covariates

(lane, original quality score, machine cycle, and sequencing context)

# of reference mismatches + 1 PHRED-scaled
# of observed bases + 2 quality score




Did the recalibration work properly?

Empirical Quality

Post-recalibration quality scores should fit the

empirically-derived quality scores very well; no obvious
systematic biases should remain
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Base recalipbration
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Summed up in GATK terms

Prior of the Likelihood of
genotype the genotype

PY{G} PI{D‘G} Diploid
P D B 7 assumption
Bayesian r{G| } Vi PT{G@'}PI’{MG@'}’ !Bayes TU]G] i
model | Pr{ D D11
Pr{DIG} = H( | 2]| 1}+ 4 2] 2}) where G = H;H,

J

Pr{D|H} is the haploid likelihood function

p—t o



Variant callers in GATK

 HaplotypeCaller

Call SNPs, indels, and some
SVs simultaneously by doing
local re-assembly and
considering haplotypes

— More accurate (esp. indels)
— Reference confidence model
— Replaces UG




HaplotypeCaller method overview

* Call SNPs, indels, and some SVs simultaneously by doing
local re-assembly and considering haplotypes

— Determine if a region has potential variation

— Make deBruijn assembly graph of the region

— Paths in the graph = potential haplotypes to evaluate

— Calculate data likelihoods given the haplotypes (PairHMM)
— ldentify variants on most likely haplotypes

— Compute allele frequency distribution to determine most likely allele
count, and emit a variant call if appropriate

— |f emitting a variant, assign genotype to each sample




HC method illustrated

N 4 ,
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Artifactual SNPs and small indels caused

by large indel can be recovered by assembly

$] chrl2:15,296,230-15,296,306

Erveeeeeern i =
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]
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] I I — I I
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e

Multiple caller artifacts
that are hard to filter
out, since they are well
supported by read data

000

i

Haplotype
Caller
(validated)

RefSeq Genes

chr12:15,296,260

i 237M of 476M




Joint Genotyping

Add a joint analysis step to take advantage
of cohort / pop genetics data

Analysis-Ready Var. Calling
Reads HC in gVCF mode -
v
[ Genotype Likelihoods}
‘ g—

[ Joint Genotyping ]
!

[ Raw Variants | SNPs |{ Indels | ]

N
Identify ActiveRegions

Assemble plausible haplotypes

Genotype sample

0/0{0/1|1/1
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A T T ,:\1 G
: ¥ ﬁ pppppp
?’1 — - TATGAAATTGGTATAGGCT
E
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Joint discovery empowers discovery at difficult sites

A
m
“

* If we analyze Sample #1 or
Sample #N alone we are not
confident that the variant is

G

G
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.-.-.-.-.-.-.-.-.-.-.-.-E-.-.-.-.-.-.-.-.-.-.-.-.-.-.l

&

Sample #1

#
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* If we see both samples then
we are more confident that
there is real variation at this
site in the cohort

Sample #N




1aS ISSUES

Joint discovery helps resolve b

A. Single sample showing strand and allelic biases

Sample #1

VAR ONLY
ON REV

ALLELE RATIO=3:1

CACAAACAAAAA

B. Decision process using evidence from multiple samples to filter out sites showing systematic biases

—— >  Strand bias?

]
w
>

AAAAAA“CCAAAAW““W‘ *

AAAAAAAAAAW”CL”CCCCC * e

Allele bias?

>

1
AAAAAAAAAA“%"”’“”“

_______________‘l_v’;e

<< dCgC IS

Samples #1-N




Classic approach to multi-sample variant discovery

* (Call variants jointly on all {Ana,ysis_Ready B .]
sample data | Reads
L : J
— Scales badly -> limitations in [ Joint variant Calling |
amount of data that can be \ Ry
processed [Cz\r’;’ants [ SNPs ] [ Indels ]
— Slow with UnifiedGenotyper { | —
(per-locus calculations) [ Variant Recalibration |
— Impossibly slow with (Sepam-telyper Variant-type)
HaplotypeCaller l l \
(so much extra work!) [ '\:,gtre,;ﬁ?s [ SNPs ] [ Indels ]

But we want to use HaplotypeCaller because it is so much better!



Problems with the “all together” approach

— Computing costs

—The “N+1 problem”

Timeline
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Joint discovery
and analysis

Results

T
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(very computationally intensive)
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J

+

[ Joint Variant Calling |

{

Raw
Variants

["swps || et ]:

!

!

|

Variant Recalibration
(separately per variant type)
1

}

v

Filtered
Variants

owes | naet ]:




Regular* VCF

##fleformat
#HALT
##FILTER
##FORMAT
##INFO
##contig
##treference

HaplotypeCaller gVCF

HEADER

#record headers

[] variant site record
[] variant site record
[C] variant site record

RECORDS

-ERC GVCF -ERC BP_RESOLUTION

i #i#fileformat ##fileformat

##ALT ##ALT

##FILTER ##FILTER

##FORMAT ##FORMAT

##GVCFBlock ##INFO

##INFO ##contig

##contig ##reference

##reference

* Some tools may output an
all-sites VCF that looks like
what you can get using HC
with -ERC BP_RESOLUTION
but they do not provide an
accurate estimate of
reference confidence.

#record headers

#record headers

B non-variant block record
[] variant site record

I non-variant block record

[] variant site record

I non-variant block record

[J variant site record

I non-variant block record

B non-variant site record
[] variant site record

B non-variant site record
B non-variant site record
B non-variant site record
[] variant site record

B non-variant site record
@ non-variant site record
[] variant site record

B non-variant site record
B non-variant site record
@ non-variant site record




Variant calling + joint genotyping workflow

\
Analysis-ready A
BAM file Analysis-ready J

BAM file

HaplotypeCaller

|

[ Raw gVCF* file

GenotypeGVCFs

[ Raw VCF file ]




Variant annotations provide key information
to identify and remove artifacts!

VCF record for an A/G SNP at 22:49582364

22 49582364
AC=3;
AF=0.50;
AN=6;
DP=87;
MLEAC=3;
MLEAF=0.50;
MQ=71.31;
MQ0=22;
QD=2.29;
SB=-31.76
GT:DP:GQ

A G 198.96
AC No. chromosomes carrying MLEAF  Max likelihood AF
alt allele

= AN Total no. of chromosomes MQ RMS MAPQ of all reads
qq:J AF Allele frequency MQO No. of MAPQ O reads at
@) locus
L
< | DP Depth of coverage QD QUAL score over depth

MLEAC Makx likelihood AC SB Estimated strand bias

score

0/1:12:99.00 0/1:11:89.43 0/1:28:37.78




VCF Files store variant information

##fileformat=VCFv4d.1l

#t#reference=1000GenomesPilot-NCBI36
##INFO=<ID=DP, Number=1, Type=Integer,Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">

##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129%>

##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer,Description="Read Depth">

#CHROM POS ID REEF ALT QUAL FILTER INFO
FORMAT NAOOOO1 NAQOOO2 NAOOOO3

20 14370 rs6054257 G A 29 PASS DP=14;AF=0.5;DB
GT:GQ:DP 01]0:48:1 1]0:48:8 1/1:43:5

20 1110696 rsoc040355 A G,T 67 PASS DP=10;AF=0.333,0.667;1I
GT:GQ:DP 1]2:21:0 2]1:2:0 2/2:35:4

20 1230237 . T . 477 PASS DP=13
GT:GQ:DP 0]0:54:7 0]0:48:4 0/0:61:2

20 1234567 microsatl GTCT G, GTACT 50 PASS DP=9

GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

[~ Header

B

Variant
i

records




Variant Filtering

* By default, GATK is very permissive. It will output
false positive sites!

* Two ways of filtering:
* Hard filters

e \Variant recalibration



Hara Filters

e User defined thresholds for each site. Hard to know
where to make cut offs?

* Mapping quality high enough
* Depth above a minimum but not too high
* Minor allele frequency above a minimum

* Heterozygosity not too high



How variant recalibration works

Train on high-confidence known sites to determine
the probability that other sites are true or false

* Assume annotations tend to form Gaussian clusters

* Build a “Gaussian mixture model” from
annotations of known variants in our dataset

 Score all variants by where their annotations lie
relative to these clusters

* Filter base on sensitivity to truth set



Actually two models: positive and negative

Positive Model (good variants)

Negative Model (bad variants, no biscuit)

True Pos.

Density

-False Pos.

- e oo '.-..... oo:oo ® 0 & & o o
X -

Done for each annotation X
then integrated into single overall VQSLOD

VQSLOD(x) = Log(p(x)/a(x))



Step 1: VariantRecalibrator

Original VCF file i %+ Resources

\ 4
Recalibration file

Tranches file
+ recalibration plots

ApplyVQSR

[ Recalibrated VCF file J




Density

T T
20 30
Number of Novel Variants (1000s)

1
40

O |

Truth sensitivity (%) 90 99 99.9

B
—) I ————————— -
o

Lower tranche = More stringent filtering




Where to get truth set”

* Reference sets (e.g. 1000 genomes)

* Take your dataset, call SNPs, hard filter heavily,
then use those as a truth set for recalibrating the
unftiltered dataset.



Alternative Filtering

* Call SNPs using multiple programs and look for
variants called in multiple programs, or combine
the information in each.

* e.g. BAYSIC



Ref

Reads

Observed Haplotypes

FreeBayes

Variant
Region

CATTGGATCA
CATTGGATCA
TATTGCATCG
CATTGGATCA
TATTGGATCG
C-TTGGATCA
CATGGGATCA

CATTGGATCA

TATTGGATCG

X8
X9

Variant
Region

(A);

(A)

x10
X/



FreeBayes

Free and open source.

Uses literal sequences of bases and haplotypes to
call SNPs so is less affected by local alignment
ISSUES.

Does not have “gvct” n+1 method, although
complicated work around exists.

Generally faster than GATK, although RAM
intensive.



Platypus

d b Align all reads to candidate haplotypes C % %
—_— - — — e —_—l —  S—
e == == = === s saam

= ==
Read alignment ~ Local assembly T, N \ 1 /
1 / - Marginalize over individuals
iy — %

- Variant-level filtering
- Individual-level filtering

|

—O—H—Q—\—O_

—— ~amnle Camnla 2 n <
n Candidate Variants _._'.' —_— e Sm;/;;le 1 .w..n;lll.il:. y, Sar;;:)le 3
: e 2k 0/0 01 2?
: Fit population frequencnes 3 e 00 o/t o/
2" candidate haplotypes : :
PIOYP Fit individual haplotypes Final variant calls

Includes local assembly, better tor large indels



Number of indels £

10,000 -

100 -

Platypus

® Platypus b
® SAMtools =
® GATK UG =y ﬂ
GATKHC .% &
10,000 -
E"ff:ﬁfé; 100 -
N
| 1 1 ] 1 1 B | | ] 1
-40 =20 0 20 40 -1,500 -1,000 -500 0

Indel size (bp)

Indel size (bp)

Includes local assembly, better tor large indels

500



ANGSD

Calls SNPs based on reads per site, no
realignment.

Outputs genotype likelihoods.
Links with algorithms that use likelihood.

Questionable with high diversity systems.



