
Topic 6+7: Population 
genomics and plotting

INTRO TO BIOINFORMATICS - MONASH SBS 2019



Learning Goals

• Understand the principals behind basic population 
genetic visualization methods  

• FST, STRUCTURE and PCA analyses. 

• Be able to plot results of these programs



Considerations for SNPs
• Ascertainment bias 

• Typically only keep variable sites, can bias diversity 
estimates 

• Linkage 

• With thousands of sites, some will be in close linkage. 

• Quality filtering 

• You must filter your SNPs to remove false SNPs, 
sometimes difficult 



Population structure

• FST  

• PCA 

• STRUCTURE



FST
• FST = HT - HO / HT 

• HT = Expected heterozygosity using global allele 
frequency based on Hardy-Weinberg 

• HO = Average observed heterozygosity



FST Programs
• hierfstat (R) 

• SNPrelate (R)

• FSTAT 

• Arlequin 

• vcftools 

• scikit-allel (python)



Principal Component 
Analysis

• Converts a set of possibly correlated variables into 
a set of values of linearly uncorrelated variables 
called principal components.



Principal Component 
Analysis
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Principal Component 
Analysis

• Converts a set of possibly correlated variables into 
a set of values of linearly uncorrelated variables 
called principal components. 

• Great first step to visualize data 

• You should prune dataset to unlinked SNPs



PCA Programs

• SNPrelate (R)

• adegenet (R) 

• SPSS



STRUCTURE

• Models K populations with a set of allele 
frequencies at each locus. 

• Individuals are assigned to one or more 
populations based on their genotype 

• Can pick the best K based on your data



STRUCTURE
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STRUCTURE

• You should prune dataset to unlinked SNPs 

• Run multiple times to confirm consistency



STRUCTURE programs

• STRUCTURE 

• Admixture 

• FASTstructure

• NGSadmix



SNP-phenotype associations 
(GWAS): one allele at a time

• Regression of phenotype on SNP 

• Use PCA or STRUCTURE as a covariate in a linear model or a 
kinship matrix of relatedness in a mixed effect model 

• Yields an estimate of the association between SNP and 
phenotype beyond what would be expected due to population 
structure

Huang et al., 2015; Nat. Com.



GWAS programs
• Tassel 

• ANGSD 

• GWAStools (R) 

• GenABEL (R) 

• GCTA



Plotting

• dplyr for data manipulation 

• ggplot2 for plotting


